На какой срок необходимо вложить 15 000 рублей при 9% годовых, чтобы сумма дохода составила 2 000 рублей?

На какой срок необходимо вложить 15 000 рублей при 9% годовых, чтобы сумма дохода составила 2 000 рублей? - коротко

Для определения срока, на который необходимо вложить 15 000 рублей при 9% годовых, чтобы получить доход в размере 2 000 рублей, необходимо воспользоваться формулой сложных процентов. Применяя формулу, можно вычислить, что требуемый срок составляет примерно 1 год и 7 месяцев.

На какой срок необходимо вложить 15 000 рублей при 9% годовых, чтобы сумма дохода составила 2 000 рублей? - развернуто

Для того чтобы определить срок, на который необходимо вложить 15 000 рублей при 9% годовых, чтобы сумма дохода составила 2 000 рублей, необходимо использовать формулу простого процента. Простой процент рассчитывается по формуле:

[ \text{Доход} = \text{Принципал} \times \text{Процентная ставка} \times \text{Время} ]

где:

  • Доход — это сумма, которую вы хотите получить (в данном случае 2 000 рублей);
  • Принципал — это начальная сумма вложения (15 000 рублей);
  • Процентная ставка — это годовой процент (9%);
  • Время — это срок вложения в годах.

Для начала переведем процентную ставку в десятичную форму:

[ 9\% = 0.09 ]

Теперь подставим известные значения в формулу:

[ 2000 = 15000 \times 0.09 \times \text{Время} ]

Решим уравнение относительно времени:

[ \text{Время} = \frac{2000}{15000 \times 0.09} ]

Выполним вычисления:

[ \text{Время} = \frac{2000}{1350} ]

[ \text{Время} \approx 1.4815 ]

Таким образом, срок вложения составляет примерно 1.4815 лет. Это означает, что для получения дохода в размере 2 000 рублей при 9% годовых необходимо вложить 15 000 рублей на срок около 1 года и 5.78 месяцев.